▷ #Clustering of #EEG Occipital Signals using K-means ( #IEEE Ecuador Technical Chapters Meeting - #ETCM2016)


  • Abstract:
    • Recent studies show that it is feasible to use electrical signals from Electro-encephalography (EEG) to control devices or prostheses, these signals are provided by the body and can be measured on the scalp to determine the intent of the person when it is observing a visual stimulus frequency range detectable by the human eye. This group of signals are very susceptible to noise due to voltage levels that are able to acquire. Therefore, in this work we propose a statistical analysis of the distribution of normal EEG signals in order to determine the need of a pre-processing to remove noise components from electrical grids or other possible sources. This preprocessing includes the design and use of a filter that will eliminate any signal component that is not in the operating frequency range of the EEG occipital area of the brain. Finally, we will proceed to use the k-means algorithm to cluster with signals according to their frequency and temporal characteristics.
  • ✅ Conference content:




















  • ✅ References:
    • J. R. Garcell, "Aportes del electroencefalograma convencional y el análisis de frecuencias para el estudio del trastorno por déficit de atención. primera parte", Salud Mental, vol. 27, no. 1, pp. 23, 2004.
    • L. A. Riggs and P. Whittle, "Human occipital and retinal potentials evoked by subjectively faded visual stimuli", Vision Research, vol. 7, no. 5-6, pp. 441-451, 1967.
    • G. Schalk and E. C. Leuthardt, "Brain-computer interfaces using electrocorticographic signals", IEEE reviews in biomedical engineering, vol. 4, pp. 140-154, 2011.
    • I. Iturrate, C. Escolano, J. Antelis and J. Minguez, "Dispositivos robóticos de rehabilitación basados en interfaces cerebro-ordenador: silla de ruedas y robot para teleoperación", III International Congress on Domotics Robotics and Remote-Assistance for All Barcelona Spain, pp. 124-134, 2009.
    • G. R. Bermúdez, P. J. G. Laencina, D. Brizion and J. R. Dorda, "Adquisición procesamiento y clasificación de señales eeg para el diseño de sistemas bci basados en imaginación de movimiento", Jornadas de introducción a la investigación de la UPCT, no. 6, pp. 10-12, 2013.
    • J. V. Pinzón, R. P. Mayorga and G. C. Hurtado, "Brazo robótico controlado por electromiografïa", Scientia Et Technica, vol. 1, no. 52, pp. 165-173, 2012.
    • K. Jerbi, J. Vidal, J. Mattout, E. Maby, F. Lecaignard, T. Ossandon, C. Hamamé, S. Dalal, R. Bouet, J.-P. Lachaux et al., "Inferring hand movement kinematics from meg eeg and intracranial eeg: From brain-machine interfaces to motor rehabilitation", IRBM, vol. 32, no. 1, pp. 8-18, 2011.
    • N. A. Badcock, P. Mousikou, Y. Mahajan, P. De Lissa, J. Thie and G. McArthur, "Validation of the emotiv epoc® eeg gaming system for measuring research quality auditory erps", PeerJ, vol. 1, pp. e38, 2013.
    • I. Mesa, A. Rubio, I. Tubia, J. De No and J. Diaz, "Channel and feature selection for a surface electromyographic pattern recognition task", Expert Systems with Applications, vol. 41, no. 11, pp. 5190-5200, 2014.
    • R. Kabacoff, R in action: data analysis and graphics with R, Manning Publications Co., 2015.
    • J. A. Hartigan and M. A. Wong, "Algorithm as 136: A k-means clustering algorithm", Journal of the Royal Statistical Society. Series C (Applied Statistics), vol. 28, no. 1, pp. 100-108, 1979. 



Leer temas relacionados:

Popular Posts

▷ Especificaciones del módulo ESP32

▷ #ESP32 - REAL-TIME CLOCK #RTC INTERNO

▷ #ESP32 - SINCRONIZAR RTC INTERNO CON SERVIDOR NTP

▷ #ESP32 - Display OLED 128x64

▷ #ESP32 - Over-The-Air programming #OTA

▷ SISTEMAS EMBEBIDOS, PROYECTOS PROPUESTOS (2021 PAO1)

▷ PROTEUS PCB DESIGN

▷ SOLUCIÓN EVALUACIÓN SISTEMAS DIGITALES 1, 1er Parcial (2021 PAE)

▷ #PROTEUS #PCB DESIGN (2020 PAO2)

▷ Instalación paso a paso de #ESP_IDF #ESPRESSIF 1/2