▷ Implementation of a Classification System of #EEG Signals Based on #FPGA

✅ Conference content:




                • ✅ References:

                1. Harris, S., & Harris, D. (2015). Digital design and computer architecture: arm edition. Morgan Kaufmann.
                2. Reaz, M. B. I, Hussain, M. S. and Mohd-Yasin, F., "Techniques of EMG signal analysis: detection, processing, classification and applications", Biological Procedures Online, vol. 8, no. 1, 2006. 
                3. Britton JW, Frey LC, Hopp JLet al., authors; St. Louis EK, Frey LC, editors. Electroencephalography (EEG): An Introductory Text and Atlas of Normal and Abnormal Findings in Adults, Children, and Infants [Internet]. Chicago: American Epilepsy Society; 2016
                4. Gordleeva, S. Y., Lukoyanov, M. V., Mineev, S. A., Khoruzhko, M. A., Mironov, V. I., Kaplan, A. Y., & Kazantsev, V. B. (2017). Exoskeleton control system based on motor-imaginary brain–computer interface. Современные технологии в медицине, 9(3 (eng)).
                5. Shin, Y. K., Lee, D. R., Hwang, H. J., You, S. J. H., & Im, C. H. (2012). A novel EEG-based brain mapping to determine cortical activation patterns in normal children and children with cerebral palsy during motor imagery tasks. NeuroRehabilitation, 31(4), 349-355.
                6. Bashivan, P., Rish, I., Yeasin, M., & Codella, N. (2015). Learning representations from EEG with deep recurrent-convolutional neural networks. arXiv preprint arXiv:1511.06448.
                7. Zhang, Y., Liu, B., Ji, X., & Huang, D. (2017). Classification of EEG signals based on autoregressive model and wavelet packet decomposition. Neural Processing Letters, 45(2), 365-378.
                8. Subasi, A., & Gursoy, M. I. (2010). EEG signal classification using PCA, ICA, LDA and support vector machines. Expert systems with applications, 37(12), 8659-8666.
                9. Bastos-Filho, T., Floriano, A., Couto, E., & Godinez-Tello, R. J. (2018). Towards a system to command a robotic wheelchair based on independent SSVEP–BCI. In Smart Wheelchairs and Brain-Computer Interfaces (pp. 369-379).
                10. Becerra, M. A., Londoño-Delgado, E., Pelaez-Becerra, S. M., Castro-Ospina, A. E., Mejia-Arboleda, C., Durango, J., & Peluffo-Ordóñez, D. H. (2018, September). Electroencephalographic Signals and Emotional States for Tactile Pleasantness Classification. In International Workshop on Artificial Intelligence and Pattern Recognition (pp. 309-316). Springer, Cham.
                11. Tello, R. M., Müller, S. M., Hasan, M. A., Ferreira, A., Krishnan, S., & Bastos, T. F. (2016). An independent-BCI based on SSVEP using Figure-Ground Perception (FGP). Biomedical Signal Processing and Control, 26, 69-79.
                12. Iandola, F., & Keutzer, K. (2017, October). Small neural nets are beautiful: enabling embedded systems with small deep-neural-network architectures. In Proceedings of the Twelfth IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis Companion (p. 1). ACM.
                13. Rodríguez-Sotelo, J., Osorio-Forero, A., Jiménez-Rodríguez, A., Cuesta-Frau, D., Cirugeda-Roldán, E., & Peluffo, D. (2014). Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques. Entropy, 16(12), 6573-6589.
                14. Lisi, G., Noda, T., & Morimoto, J. (2014). Decoding the ERD/ERS: influence of afferent input induced by a leg assistive robot. Frontiers in systems neuroscience, 8, 85.
                15. Castillo-Garcia, J. F., Caicedo-Bravo, E. F., & Bastos, T. F. (2018). Adaptive Spontaneous Brain-Computer Interfaces Based on Software Agents. Advances in Data Science and Adaptive Analysis.
                16. Gao, Z. K., Cai, Q., Yang, Y. X., Dong, N., & Zhang, S. S. (2017). Visibility graph from adaptive optimal kernel time-frequency representation for classification of epileptiform EEG. International Journal of Neural Systems, 27(04), 1750005.
                17. Gordleeva, S. Y., Lukoyanov, M. V., Mineev, S. A., Khoruzhko, M. A., Mironov, V. I., Kaplan, A. Y., & Kazantsev, V. B. (2017). Exoskeleton control system based on motor-imaginary brain–computer interface. Современные технологии в медицине, 9(3 (eng)).
                18. Schirrmeister, R. T., Springenberg, J. T., Fiederer, L. D. J., Glasstetter, M., Eggensperger, K., Tangermann, M., ... & Ball, T. (2017). Deep learning with convolutional neural networks for EEG decoding and visualization. Human brain mapping, 38(11), 5391-5420.
                19. Becerra, M. A., Londoño-Delgado, E., Pelaez-Becerra, S. M., Serna-Guarín, L., Castro-Ospina, A. E., Marin-Castrillón, D., & Peluffo-Ordóñez, D. H. (2018, September). Odor Pleasantness Classification from Electroencephalographic Signals and Emotional States. In Colombian Conference on Computing (pp. 128-138). Springer, Cham.
                20. Movahedi, F., Coyle, J. L., & Sejdić, E. (2018). Deep belief networks for electroencephalography: A review of recent contributions and future outlooks. IEEE journal of biomedical and health informatics, 22(3), 642-652. 
                21. Ordóñez, F. J., & Roggen, D. (2016). Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition. Sensors, 16(1), 115.
                22. Murad, A., & Pyun, J. Y. (2017). Deep recurrent neural networks for human activity recognition. Sensors, 17(11), 2556.
                23. Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R. BCI2000: A General-Purpose Brain-Computer Interface (BCI) System. IEEE Transactions on Biomedical Engineering 51(6):1034-1043, 2004.
                24. Kenny, R., & Watt, J. (2016). The Breakthrough Advantage for FPGAs with Tri-Gate Technology. URL:  https://www.altera.com/en\ _US/pdfs/literature/wp/wp-01201-fpga-tri-gate-technology.pdf:12.10.2017.

                                                              Leer temas relacionados:

                                                              Comentarios

                                                              Popular Posts

                                                              ▷ Especificaciones del módulo ESP32

                                                              ▷ #ESP32 - REAL-TIME CLOCK #RTC INTERNO

                                                              ▷ #ESP32 - SINCRONIZAR RTC INTERNO CON SERVIDOR NTP

                                                              ▷ #ESP32 - Display OLED 128x64

                                                              ▷ #ESP32 - Over-The-Air programming #OTA

                                                              ▷ SISTEMAS EMBEBIDOS, PROYECTOS PROPUESTOS (2021 PAO1)

                                                              ▷ SOLUCIÓN EVALUACIÓN FUNDAMENTOS DE ELECTRICIDAD Y SISTEMAS DIGITALES, 1er Parcial (2021 PAO1)

                                                              ▷ PROTEUS PCB DESIGN

                                                              ▷ SOLUCIÓN EVALUACIÓN SISTEMAS EMBEBIDOS, 1er Parcial (2020 PAO 2)

                                                              ▷ SOLUCIÓN EVALUACIÓN SISTEMAS DIGITALES 1, 1er Parcial (2021 PAE)