▷ Implementation of a Classification System of #EEG Signals Based on #FPGA
- ➡️ #EEG #Classification #HumanMachineInterface #BCI #BrainComputerInterface
- ➡️ ICEDEG2020: 2020 Seventh International Conference on eDemocracy & eGovernment (ICEDEG)
- ⭐ Read full paper: https://ieeexplore.ieee.org/document/9096752
- ✅ Read Proceedings: https://www.computer.org/csdl/proceedings/icedeg/2020/1jZacXR14xa
- When using this resource, please cite the original publication:
- ✅ Abstract:
- In the field of prosthetics, different technologies have been incorporated in recent years to improve their development and control, likewise the application of Field-Programmable Gate Arrays (FPGA) related to the Biomedicine field has increased due to its flexibility to perform multiple instructions in a reduced amount of time. This paper presents the implementation of a classification system based on FPGA capable of classifying characterized data, representing an imaginary motor task and a motor task in lower extremities. A three-layer feed-forward neural network was designed in Matlab, testing different architectures to assess the performance of the classifier, using methods such as the confusion matrix and the ROC curve.
✅ Conference content:
- ✅ References:
- Harris, S., & Harris, D. (2015). Digital design and computer architecture: arm edition. Morgan Kaufmann.
- Reaz, M. B. I, Hussain, M. S. and Mohd-Yasin, F., "Techniques of EMG signal analysis: detection, processing, classification and applications", Biological Procedures Online, vol. 8, no. 1, 2006.
- Britton JW, Frey LC, Hopp JLet al., authors; St. Louis EK, Frey LC, editors. Electroencephalography (EEG): An Introductory Text and Atlas of Normal and Abnormal Findings in Adults, Children, and Infants [Internet]. Chicago: American Epilepsy Society; 2016
- Gordleeva, S. Y., Lukoyanov, M. V., Mineev, S. A., Khoruzhko, M. A., Mironov, V. I., Kaplan, A. Y., & Kazantsev, V. B. (2017). Exoskeleton control system based on motor-imaginary brain–computer interface. Современные технологии в медицине, 9(3 (eng)).
- Shin, Y. K., Lee, D. R., Hwang, H. J., You, S. J. H., & Im, C. H. (2012). A novel EEG-based brain mapping to determine cortical activation patterns in normal children and children with cerebral palsy during motor imagery tasks. NeuroRehabilitation, 31(4), 349-355.
- Bashivan, P., Rish, I., Yeasin, M., & Codella, N. (2015). Learning representations from EEG with deep recurrent-convolutional neural networks. arXiv preprint arXiv:1511.06448.
- Zhang, Y., Liu, B., Ji, X., & Huang, D. (2017). Classification of EEG signals based on autoregressive model and wavelet packet decomposition. Neural Processing Letters, 45(2), 365-378.
- Subasi, A., & Gursoy, M. I. (2010). EEG signal classification using PCA, ICA, LDA and support vector machines. Expert systems with applications, 37(12), 8659-8666.
- Bastos-Filho, T., Floriano, A., Couto, E., & Godinez-Tello, R. J. (2018). Towards a system to command a robotic wheelchair based on independent SSVEP–BCI. In Smart Wheelchairs and Brain-Computer Interfaces (pp. 369-379).
- Becerra, M. A., Londoño-Delgado, E., Pelaez-Becerra, S. M., Castro-Ospina, A. E., Mejia-Arboleda, C., Durango, J., & Peluffo-Ordóñez, D. H. (2018, September). Electroencephalographic Signals and Emotional States for Tactile Pleasantness Classification. In International Workshop on Artificial Intelligence and Pattern Recognition (pp. 309-316). Springer, Cham.
- Tello, R. M., Müller, S. M., Hasan, M. A., Ferreira, A., Krishnan, S., & Bastos, T. F. (2016). An independent-BCI based on SSVEP using Figure-Ground Perception (FGP). Biomedical Signal Processing and Control, 26, 69-79.
- Iandola, F., & Keutzer, K. (2017, October). Small neural nets are beautiful: enabling embedded systems with small deep-neural-network architectures. In Proceedings of the Twelfth IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis Companion (p. 1). ACM.
- Rodríguez-Sotelo, J., Osorio-Forero, A., Jiménez-Rodríguez, A., Cuesta-Frau, D., Cirugeda-Roldán, E., & Peluffo, D. (2014). Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques. Entropy, 16(12), 6573-6589.
- Lisi, G., Noda, T., & Morimoto, J. (2014). Decoding the ERD/ERS: influence of afferent input induced by a leg assistive robot. Frontiers in systems neuroscience, 8, 85.
- Castillo-Garcia, J. F., Caicedo-Bravo, E. F., & Bastos, T. F. (2018). Adaptive Spontaneous Brain-Computer Interfaces Based on Software Agents. Advances in Data Science and Adaptive Analysis.
- Gao, Z. K., Cai, Q., Yang, Y. X., Dong, N., & Zhang, S. S. (2017). Visibility graph from adaptive optimal kernel time-frequency representation for classification of epileptiform EEG. International Journal of Neural Systems, 27(04), 1750005.
- Gordleeva, S. Y., Lukoyanov, M. V., Mineev, S. A., Khoruzhko, M. A., Mironov, V. I., Kaplan, A. Y., & Kazantsev, V. B. (2017). Exoskeleton control system based on motor-imaginary brain–computer interface. Современные технологии в медицине, 9(3 (eng)).
- Schirrmeister, R. T., Springenberg, J. T., Fiederer, L. D. J., Glasstetter, M., Eggensperger, K., Tangermann, M., ... & Ball, T. (2017). Deep learning with convolutional neural networks for EEG decoding and visualization. Human brain mapping, 38(11), 5391-5420.
- Becerra, M. A., Londoño-Delgado, E., Pelaez-Becerra, S. M., Serna-Guarín, L., Castro-Ospina, A. E., Marin-Castrillón, D., & Peluffo-Ordóñez, D. H. (2018, September). Odor Pleasantness Classification from Electroencephalographic Signals and Emotional States. In Colombian Conference on Computing (pp. 128-138). Springer, Cham.
- Movahedi, F., Coyle, J. L., & Sejdić, E. (2018). Deep belief networks for electroencephalography: A review of recent contributions and future outlooks. IEEE journal of biomedical and health informatics, 22(3), 642-652.
- Ordóñez, F. J., & Roggen, D. (2016). Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition. Sensors, 16(1), 115.
- Murad, A., & Pyun, J. Y. (2017). Deep recurrent neural networks for human activity recognition. Sensors, 17(11), 2556.
- Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R. BCI2000: A General-Purpose Brain-Computer Interface (BCI) System. IEEE Transactions on Biomedical Engineering 51(6):1034-1043, 2004.
- Kenny, R., & Watt, J. (2016). The Breakthrough Advantage for FPGAs with Tri-Gate Technology. URL: https://www.altera.com/en\ _US/pdfs/literature/wp/wp-01201-fpga-tri-gate-technology.pdf:12.10.2017.
Leer temas relacionados:
- ✅ Implementation of a Classification System of #EEG Signals Based on #FPGA
- ✅ #EEG signal classification with Machine Learning #ML using #Matlab
- ✅ #EEG Signal Clustering for Motor and Imaginary Motor Tasks on Hands and Feet
- ✅ Supervised Pattern Recognition Techniques for Detecting Motor Intention of Lower Limbs in Subjects with Cerebral Palsy #CP
- ✅ Clustering of #EEG Occipital Signals using K-means
- ✅ #EMG signal classification with Machine Learning #ML using #Matlab
- ✅ #EMG Signal Processing with #Clustering Algorithms for Motor Gesture Tasks
Comentarios
Publicar un comentario