Entradas

Mostrando las entradas con la etiqueta eeg

▷ #BCI System using a Novel Processing Technique Based on Electrodes Selection for Hand #Prosthesis Control

Imagen
⭐⭐⭐⭐⭐ #BCI System using a Novel Processing Technique Based on Electrodes Selection for Hand #Prosthesis Control from Victor Asanza ➡️ #EEG #Classification #HumanMachineInterface #BCI #BrainComputerInterface #Emotiv ✅ #DigitalSystems #DigitalElectronic #DigitalCircuits #HDL #VHDL #FPGA ➡️ BMS2021:  11th IFAC Symposium on Biological and Medical Systems #BMS2021 ➡️  Presented by: Alisson Constantine ➡️ When using this resource, please cite the original publication: Constantine, A., Asanza, V., Loayza, F. R., Peláez, E., & Peluffo-Ordóñez, D. (2021). BCI System using a Novel Processing Technique Based on Electrodes Selection for Hand Prosthesis Control.  IFAC-PapersOnLine, 54(15), 364-369. ✅  Abstract: This work proposes an end-to-end model architecture, from feature extraction to classification using an Artificial Neural Network. The feature extraction process starts from an initial set of signals acquired by electrodes of a Brain-Computer Interface (BCI)...

▷ Control of Upper and Lower Limb Prostheses using a Real-Time #EEG Signal Classification System

Imagen
⭐⭐⭐⭐⭐ Control of Upper and Lower Limb Prostheses using a Real-Time #EEG Signal Classification System ➡️ #EEG #Classification #HumanMachineInterface #BCI #BrainComputerInterface When using this resource, please cite the original publication:   Constantine, A., Asanza, V., Loayza, F. R., Peláez, E., & Peluffo-Ordóñez, D. (2021). BCI System using a Novel Processing Technique Based on Electrodes Selection for Hand Prosthesis Control. IFAC-PapersOnLine, 54(15), 364-369. V. Asanza, A. Constantine, S. Valarezo and E. Peláez, "Implementation of a Classification System of EEG Signals Based on FPGA," 2020 Seventh International Conference on eDemocracy & eGovernment (ICEDEG), Buenos Aires, Argentina, 2020, pp. 87-92, doi: 10.1109/ICEDEG48599.2020.9096752. Asanza, V., Pelaez, E., & Loayza, F. (2017, October). EEG signal clustering for motor and imaginary motor tasks on hands and feet. In Ecuador Technical Chapters Meeting (ETCM), 2017 IEEE (pp. 1-5). IEEE. Asanza, V., Ochoa, ...

▷ Charla FIEC: #SSVEP_EEG Signal Classification based on #Emotiv EPOC #BCI and #RaspberryPi

Imagen
⭐⭐⭐⭐⭐ Charla FIEC: #SSVEP_EEG Signal Classification based on #Emotiv EPOC #BCI and #RaspberryPi ⭐⭐⭐⭐⭐ Charla FIEC: #SSVEP_EEG Signal Classification based on #Emotiv EPOC #BCI and #RaspberryPi   from  Victor Asanza ➡️ #EEG #Classification #HumanMachineInterface #BCI #BrainComputerInterface #Emotiv ➡️ BMS2021:  11th IFAC Symposium on Biological and Medical Systems #BMS2021 ➡️  Presented by:  Karla Avilés ✅ Repository:  https://github.com/kaviles22/EEG_Embedded_Systems ➡️ When using this resource, please cite the original publication: Asanza, V., Avilés-Mendoza, K., Trivino-Gonzalez, H., Rosales-Uribe, F., Torres-Brunes, J., Loayza, F. R., ... & Tinoco-Egas, R. (2021). SSVEP-EEG Signal Classification based on Emotiv EPOC BCI and Raspberry Pi. IFAC-PapersOnLine, 54(15), 388-393. ✅  Video of the talk: ✅ Conference content: Introduction Related work Dataset Methodology Results Conclusions ✅  References: Al-Saegh, A., Dawwd, S.A., and Abdu...

▷ #SSVEP_EEG Signal Classification based on #Emotiv EPOC #BCI and #RaspberryPi

Imagen
  ⭐⭐⭐⭐⭐ SSVEP-EEG Signal Classification based on Emotiv EPOC BCI and Raspberry Pi   from  Victor Asanza ➡️ #EEG #Classification #HumanMachineInterface #BCI #BrainComputerInterface #Emotiv ➡️ BMS2021:  11th IFAC Symposium on Biological and Medical Systems #BMS2021 ➡️  Presented by:  Karla Avilés ✅ Repository: https://github.com/kaviles22/EEG_Embedded_Systems ⭐  Read full paper:  https://doi.org/10.1016/j.ifacol.2021.10.287 When using this resource, please cite the original publication: Asanza, V., Avilés-Mendoza, K., Trivino-Gonzalez, H., Rosales-Uribe, F., Torres-Brunes, J., Loayza, F. R., ... & Tinoco-Egas, R. (2021). SSVEP-EEG Signal Classification based on Emotiv EPOC BCI and Raspberry Pi. IFAC-PapersOnLine, 54(15), 388-393. ✅  Abstract: This work presents the experimental design for recording Electroencephalography (EEG) signals in 20 test subjects submitted to Steady-state visually evoked potential (SSVEP). The stimuli were perfor...