▷ #SSVEP_EEG Signal Classification based on #Emotiv EPOC #BCI and #RaspberryPi

 


✅ Video of the talk:


✅ Conference content:
  • Introduction


  • Related work
  • Dataset





  • Methodology




  • Results

  • Conclusions


✅ References:
        1. Al-Saegh, A., Dawwd, S.A., and Abdul-Jabbar, J.M. (2021). Deep learning for motor imagery eeg-based classification: A review. Biomedical Signal Processing and Control, 63, 102172.
        2. Artoni, F., Delorme, A., and Makeig, S. (2018). Applying dimension reduction to eeg data by principal component analysis reduces the quality of its subsequent independent component decomposition. NeuroImage, 175, 176-187.
        3. Asanza, V., Constantine, A., Valarezo, S., and Peláez, E. (2020). Implementation of a classification system of eeg signals based on fpga. In 2020 Seventh International Conference on eDemocracy & eGovernment (ICEDEG), 87-92. IEEE.
        4. Chen, X., Wang, Y., Gao, S., Jung, T.P., and Gao, X. (2015). Filter bank canonical correlation analysis for implementing a high-speed ssvep-based brain-computer interface. Journal of neural engineering, 12(4), 046008.
        5. Chen, X., Zhao, B.,Wang, Y., and Gao, X. (2019). Combination of high-frequency ssvep-based bci and computer vision for controlling a robotic arm. Journal of neural engineering, 16(2), 026012.
        6. Chen, X., Zhao, B., Wang, Y., Xu, S., and Gao, X. (2018). Control of a 7-dof robotic arm system with an ssvep-based bci. International journal of neural systems, 28(08), 1850018.
        7. Chouhan, T., Robinson, N., Vinod, A., Ang, K.K., and Guan, C. (2018). Wavlet phase-locking based binary classification of hand movement directions from eeg. Journal of neural engineering, 15(6), 066008.
        8. Edla, D.R., Mangalorekar, K., Dhavalikar, G., and Dodia, S. (2018). Classification of eeg data for human mental state analysis using random forest classifier. Procedia computer science, 132, 1523-1532.
        9. Erkan, E. and Akbaba, M. (2018). A study on performance increasing in ssvep based bci application. Engineering Science and Technology, an International Journal, 21(3), 421-427.
        10. Fischer, N.L., Peres, R., and Fiorani, M. (2018). Frontal alpha asymmetry and theta oscillations associated with information sharing intention. Frontiers in behavioral neuroscience, 12, 166.
        11. Ghaemi, A., Rashedi, E., Pourrahimi, A.M., Kamandar, M., and Rahdari, F. (2017). Automatic channel selection in eeg signals for classification of left or right hand movement in brain computer interfaces using improved binary gravitation search algorithm. Biomedical Signal Processing and Control, 33, 109-118.
        12. Han, X., Lin, K., Gao, S., and Gao, X. (2018). A novel system of ssvep-based human-robot coordination. Journal of neural engineering, 16(1), 016006. Huang, D., Qian, K., Fei, D.Y., Jia, W., Chen, X., and Bai, O. (2012). Electroencephalography (eeg)-based brain-computer interface (bci): A 2-d virtual wheelchair control based on event-related desynchronization/synchronization and state control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(3), 379-388.
        13. Khosla, A., Khandnor, P., and Chand, T. (2020). A comparative analysis of signal processing and classification methods for different applications based on eeg signals. Biocybernetics and Biomedical Engineering, 40(2), 649-690.
        14. Raquel Tinoco-Egas, Karla Aviles, Jamil Torres-Brunes, Hector Trivino-Gonzalez, Víctor Asanza, Félix Rosales-Uribe, Francis R. Loayza, Enrique Peláez, April 27, 2021, "SSVEP-EEG data collection using Emotiv EPOC", IEEE Dataport, doi: https://dx.doi.org/10.21227/0j42-qd38.
        15. Shao, L., Zhang, L., Belkacem, A.N., Zhang, Y., Chen, X., Li, J., and Liu, H. (2020). Eeg-controlled wall-crawling cleaning robot using ssvep-based brain-computer interface. Journal of healthcare engineering, 2020.
        16. Waytowich, N., Lawhern, V.J., Garcia, J.O., Cummings, J., Faller, J., Sajda, P., and Vettel, J.M. (2018). Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials. Journal of neural engineering, 15(6), 066031.
        17. Zhang, D., Huang, B., Wu, W., and Li, S. (2015). An idle-state detection algorithm for ssvep-based brain-computer interfaces using a maximum evoked response spatial filter. International journal of neural systems, 25(07), 1550030.

                                                                                      Read related topics:

                                                                                      Comentarios

                                                                                      Popular Posts

                                                                                      ▷ Especificaciones del módulo ESP32

                                                                                      ▷ #ESP32 - REAL-TIME CLOCK #RTC INTERNO

                                                                                      ▷ #ESP32 - SINCRONIZAR RTC INTERNO CON SERVIDOR NTP

                                                                                      ▷ #ESP32 - Display OLED 128x64

                                                                                      ▷ #ESP32 - Over-The-Air programming #OTA

                                                                                      ▷ SISTEMAS EMBEBIDOS, PROYECTOS PROPUESTOS (2021 PAO1)

                                                                                      ▷ SOLUCIÓN EVALUACIÓN FUNDAMENTOS DE ELECTRICIDAD Y SISTEMAS DIGITALES, 1er Parcial (2021 PAO1)

                                                                                      ▷ PROTEUS PCB DESIGN

                                                                                      ▷ SOLUCIÓN EVALUACIÓN SISTEMAS EMBEBIDOS, 1er Parcial (2020 PAO 2)

                                                                                      ▷ SOLUCIÓN EVALUACIÓN SISTEMAS DIGITALES 1, 1er Parcial (2021 PAE)